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A technique based on the analytical method of lines is presented for predicting shape changes during electrodeposition. The
technique is presented for both primary and secondary current distributions. The method presented does not require iterations for
nonlinear Butler-Volmer boundary conditions or changing electrode shapes. The technique is based on a semianalytical method
developed earlier for predicting current distributions in electrochemical cells. This technique is attractive because it provides a
symbolic solution for the Laplace equation, and hence requires less computation time to perform case studies.
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Potential distributions and their associated current density distri-distributions simultaneously. This avoids numerical inaccuracies that
butions (primary and secondarare typically obtained by solving result from numerical differentiation of the potential distribution to
Laplace’s equatioi® The methods used to solve Laplace’s equation find the current distribution.
include analytical and numerical methods. Analytical metheds, Recently, Weset al**and Gill et al*® presented models for pre-
conformal mappinfy provide the maximum insight into the problem dicting copper electrodeposition in vias and trenctfes.In their
and usually yield closed form potential and current distributions. Mmodels, they assumed that the deposit grows in one dimension. In
Unfortunately, analytical techniques are system specific, are rethis paper, we present a technique for modeling the deposit growth
stricted to linear kinetics, and are often difficult to obtain. Numerical I" one dimension(1-D) where the potential is governed by the
techniques are very general, but usually give a numerical value fOILapIace equation in 2-D.
the potential at a particular location. A new technigsemianalyti- Theoretical Formulation
cal method or analytic method of linewas developetland shown The 2-D cell to be modeled is shown in Fig. 1. The cathode is of
to be more general than a particular analytical solution technique; itorimary interest and is at the bottom of the cell and the anode is
gave better insight than numerical techniques for a certain class ofoplanar with the upper insulating plane. The sidewalls represent
problems(Laplace equation which has constant coefficients in ateither insulating surfaces or planes of symmetry. Between the elec-
least one of the independent variablédote that the semianalytical trodes is an electrolytic solution of uniform composition. Elec-
method presented earfdor solving Laplace’s equation in two spa- trodeposition of metal at the cathode occurs at constant cell voltage.
tial coordinates with nonlinear boundary conditions does not requireThis geometry is chosen as it restricts the growth to 1-D. The tech-
iterations for interior node points as is the case for numericalnique developed is general and can handle geometries with singu-
method< Nonlinearities of the boundary conditions can be removed larities (e.g, at the anode/insulator interfacex € 1/2; y = b)
by solving for the constants that appear in the solution of Laplace’swhere the current density is infinjte
equation using our analytic method of lines. _ The following assumptions are made: A single cathod_ic reac-

During electrodeposition of a meté.g, coppey on a substrate,  tion takes place at the cathc_)c(en.) The anc_)_qe is unpolarized and
the deposit grows on the cathode. Since the shape of the cathod#®€s not change shape during electrolysis) The transport and
changes during deposition, the potential and current distributions ar&inetic parameters do not vary in space or timi:)(The shape
usually solved numericall§** Numerical methods reported in the change is restricted to 1-[y).
|iteratur67'11 for SOlVing the Laplace equation include finite differ- Primary current distribution—The governing equation for the
ence, finite element, and boundary element techniques. Georgiadgsotential field in the electrolytic solution obeys the Laplace
et al developed an adaptive finite element method for simulatingequatior
shape changes. Numerical methods reported in the literature require V24 = 0 [1]
solving the Laplace equation for every time step because the shape
of the cathode changes, and the numerical methods require solvingith the boundary conditiongat the insulators and planes of sym-
the Laplace equation again for a new geometry. In addition, formetry)

every time step the existing numerical methods in the literature re- ad

quires iterations until convergence for solving the Laplace equation ox 0 atx=0 andx =1 foraly [2]
with nonlinear Butler-Volmer boundary conditions. Our semianalyti-

cal method provides a means for solving for the Laplace equation b 0 b 0=x< | 3
with nonlinear Butler-Volmer boundary conditions without itera- ay aty=b, 0=x 2 (3]

tions. Another advantage of the semianalytical method is that theS. th de i larized. th tential in the electrolvti i
method is valid for arbitrary cathode shapes as shown for a sinus Ince the anode 1S unpolarized, the potential in the electrolylic so

soidal electrodé. The flexibility of the semianalytical method in lution IS equal to the set potential of the anaplg, and is uniform
handling nonlinear boundary conditions and arbitrary elec'[rodealong its surface

shapes is exploited in this investigation to predict the shape changes
during electrodeposition. Another unique aspect of the semianalyti-

cal technique is that the method yields both potential and current . T
a y P At the cathode surface for a primary current distribution, the cathode

remains unpolarized

* Electrochemical Society Active Member. & =d¢c=0 aty=h for all x (reversible cathode [5]
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I
b = b aty = b, 5 =X < | (reversible anode [4]

Note that the heightt of the deposit defined in Eq. 5 varies both as
a function of timet and the positiorx. Initially at timet = 0, the
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x=12 1

3 < X < 1 (reversible anode [13]
INSULATOR ANODE ® =0 atY =H for all X (reversible cathode [14]
aH a0

dr 9Yat cathode, ¥-H

(I)=CI)A atY:l,

[15]

with the initial condition
H(t=0)=0 [16]

Note that no initial conditions are required fér(X,Y). The above
dimensionless groups were presented earlier by Akkdral” Equa-
tions 10-16 constitute the system to be solved in order to determine
the shape evolution of the cathode with tifie., H(7)].

Secondary current distributior-For secondary current distribu-
tions, the reaction rate obeys both Ohm’s law and Butler-Volmer
kinetics at the cathode surface

b

| = —k — — io[eaAnF/RTd) _ efaan/Rch]y:h [17]

any_p,

’ wheren is the inward normal directed from the cathode surfdag.

1). Initially, the normal vecton is in the same direction as the
GROWING DEPOSI axis, but the direction ofi changes with time as the deposit grows
on the cathode surface. This change of direction &f included in

our model as explained below. Equation 17 can be converted to
dimensionless form

INSULATOR
INSULATOR

=1}

CATHODE

_ _ apnd _ q—acd
PV lo[e™A e ly=n [18]

x=0

e
I
~

Figure 1. Cell geometry prior to shape change at cathode. wherel is the dimensionless exchange current density defined by
ip InF
- . . . lo = —5+ [19]
deposit thicknes$ is zero. Equations 1-5 provide the current and kRT
potential distribution within the cell for any particular surface shape. _ _ . o _
At any instant in time, the local growth of the cathode surface is In this case, the deposit growth rate in tHelirection is defined by

given by Faraday’s law dH P P
- = = = cos6 20
@ = _l i = & 8(1) [6] dr aYcathode 9Ncathode [ ]

dt npF npF ayy—p

where6 is the angle between thé axis and the normal vectar.
This is a moving boundary problem with moving boundérgthode Note that® = 0 att = 0. 8 changes with bothr and X. In this
shape defined by Eq. 6. The governing equations are made dimen4investigation, we restrict the growth of deposit to thelimension
sionless using the following variables only.
Equations 10-13, 16, 18, and 20 constitute the system of equa-
d = E (b — do); X = X, Y = Y, A= E [7] tions to be solved to determine the evolution of the cathode shape
RT ' I I I with time [H(1)] for a secondary current distribution, given values
h for A, 1y, @5, ap, and ac. Existing methods in the literature
_ (8] require specifying an initial guess for the distribution of the potential
! for solving Butler-Volmer boundary conditions. Our method does
not require any initial guesses for the potential distribufion.

H =

and
Semianalytical Technique
MkRT

= 55—t [9] The computational method consists of applying finite difference
1“n°Fp approximations for the derivatives which are accurate to the order
(AX)? in the X axis and integrating the resulting equations analyti-

The model equations become cally in Y. This method converts the Laplace equation and the

92d 92D boundary conditions aX = 0 andX = 1 to a system of coupled
A? X2 T ayz =0 [10] second order linear ordinary differential equationsyifor the val-
ues of the potentials at the interior node point®;).°> The potential
od along the lineX = 0.5 has a singularity & = 1. Consequently, to
ox ~0atxXx=0andX=1 foralyY [11] remove the need to specify a boundary conditiondoat X = 0.5
andY = 1, the potential along the lineX(= 0.5) is eliminated by
E —0atY=1 0=X< 1 [12] equating the bacszélrd and forward flux of potentiqlxat. 0.5 for
aY 2 all Y exceptY = 1° For example, wherN = 13 interior node
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points are used, the seventh interior node poht+ 1)/2 corre-  So for secondary current distribution, the given moving boundary

sponds to the liné& = 0.5. The potential at this line is eliminated problem is reduced tl — 1 simultaneous first order ODEs given

by requiring that the current in thé direction be continuous by Eqg. 24 with 2\ — 2 algebraic equations given by Eg. 25 and 26.
Equations 24-26 constitute the governing equations for predicting

P _ P [21] the shape changes for secondary current distribution. The steps in-
volved in the simulation can be summarized as follows.
1. Laplace equatioEq. 10 is discretized in theX direction by
Equation 21 can be written in finite difference form applying finite differences withN equally spaced interior node

IXx—05-  0Xx—os+

points.
E 3P+ — 4Pn-12 + Piv-ape 2. The boundary values for the potentiakat= 0 andX = 1 are
2 AX eliminated using the boundary conditiofisg. 1.

_ _ 3. The potential along the lin& = 0.5 [i = (N + 1)/2] is
_ 1 73Pwine  APwige = Pinvse [22] eliminated using Eq. 23.

2 Ax 4. The potential derivatives af = H (at the interior node
pointg are specified ag;, wherei goes from 1 toN (i # (N
whereAX = 1/(N + 1) and Eq. 22 can be solved fdry. 1. + 1)/2).
5. The problem is reduced toN2— 2 unknowns(H; andc; at
DNty = 3 (Pnszyz T Pn—1y2) i=1..N,i# (N+ 1)/2) whose values are obtained by solving

the N — 1 simultaneous nonlinear ODEs in tinfEqg. 29 coupled
with N — 1 algebraic equationdEq. 25 for primary current distri-
6 (Pntsye + Pin-g)r2) (23] butions. For secondary current distributions, the problem is reduced
to 3N — 3 unknowns(H;, c;, and®; ati =1 ... N, i # (N
Note that to includ& = 0.5 as a node poin should be chosenas 1 1)/2) whose values are obtained by solving e~ 1 simulta-
an odd number. neous nonlinear ODEs in tim&g. 24 coupled with N — 2 alge-

The Laplace equation is discretized in theaxis using finite ~ braic equationsEq. 25 and 26 For both primary and secondary
differences with\ interior node points. The potentials at the Oth and current distributions, a symbolic solution is obtained for the poten-
N + 1th node points are given by the boundary conditionsat tial and current distributions for a given geometifhese symbolic
= 0 and 1, respectivelyEq. 11. The potential atX = 0.5 [(N solutions are general and valid for any cathode shape, polarization
+ 1)/2th node poiritis given by Eq. 23 and is used to remove Parameterlo, aspect ratioA, and size of cathode and anctfé.
explicit dependence of the potential at nodé £ 1)/2 from the These symbolic solutions are also valid for any boundary condition
system of equations. So whéhinterior node points are used, the on the cathode and anodler example, see Eq. 44, 47, and 50 in

Laplace equation is convertedtb— 1 linear coupled second order Ref. 5.

differential equations irv.% These equations are then integrated us- 6d.__The func_tlonsfi deflr:ed n leq< 25 d(_epend on th? b(;undary
ing the matrix exponential matrix methdckor a primary current ~ condition aty = 1. For values oX < 0.5[i < (N + 1)/2] f; is
distribution case, wheN interior node points are used, the deposit 9iven by the insulator boundary condition. For valuesxof 0.5
growth rate is given byN — 1 simultaneous first order ordinary [I = (N + 1)/2], f; is given by the boundary condition at the an-

differential equations ode surface ®; = d,). S . .
g 7. Potential and current distributions are obtained for the given
H; ID; i = i i i
i LG i=1 . N, i%(N+12 [24] geometry at time = 0. These symbolic solutions are valid for both

the primary and secondary current distributions. For primary current
distributions, the values of, ®,, andN are fixed. This gives a
wherec; is the potential derivativea®/9Y) at the cathode surface Symbolic expression for the functiorfs defined in Eq. 25. The
at the various interior node pointée., ¢; = a®,;/aY, whereX; functionality f; defined in Eq. 25 is a function of deposit thickness at
= iAXfori =1 .. N,i # (N + 1)/2). The boundary conditions the ith node_pomt,H!(T) and the potential gradlents,-. The N.
atY = 1 are given by — 1 algebraic equationd&Eq. 25 are solved simultaneously to give
the current distribution a¥ = H (cathode surfageat T = 0; i.e,,
fi(Hi(7), Cii—inizn+n2) =0 1 =1 ..N, i # (N+ 1)/2 unknown constants; [i = 1 ... N, (i # (N + 1)/2]. Note that at
[25] time T = 0, the thicknesses at all the interior node poirts(7) ]
are all zero. A time step okt is chosen and Eq. 24 is integrated by
The functionsf; values are obtained in the same manner as thosé'SiNg Maple with Euler’s explicit forward integration
given by Eq. 31 and 32 in Ref. 5, however, thevalues obtained

dr Yy

here are too long to be include@hesef; values are available upon Hi(r + A1) = Hi(m) + cAr T=1..N, i (N+ D2
request from the autho)sThus, the problem is reduced taN2 [27]

— 2 unknowns(H; andc; ati = 1 ... N, i # (N + 1)/2) whose

values are obtained by solving ttNe — 1 simultaneous first order 8. Once the new thicknesspl(t + Ar)] at the interior node
ordinary differential equationsODES given by Eq. 24 and\ points are estimated using Eq. 27, the new values of thickness

-1 _algebraic equat_ions give_n by Eq. 25_. I_Equations 24 and 25H;(t + Ar) are substituted in the functiorfs in Eqg. 25. TheseN
constitute the governing equations for predicting the cathode shape- 1 algebraic equations are again solved for thealues to give
changes for primary current distributions. the current distribution aY = H; at = = 7 + 2Ar. These new

Equations 24 and 25 developed above for primary current distri-,5j,es ofc. [i=1..N, (i # (N + 1)/2] are then substituted
butions are also valid for secondary current distributi@cs. 20 and into Eq. 27' ’to find the ne;/v thickness(t + 2A7).

18). However, in secondary current distributions, thevalues are 9. Step 9 is repeated and the shape evolution of cathode surface
given by the Butler-Volmer equation is obtained.
C = —lo[e™® — e=xc¥] _, cosh, i =1 ..N, 10. The same procedure used for primary current distributions is

followed for the secondary current distributions also. In addition to
i # (N+ 1)/2 [26] solving theN — 1 algebraic equations for the functionality de-
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current density on the cathode surface remains finite, since there is
fined by Eq. 25 at every time step, — 1 algebraic equations for no singular point in the cathode surfa¢@n the contrary, the cur-

the Butler-Volmer equation defined by Eq. 26 are solved simulta—r_ent (_jensity becomes infinity at the singular pokit= 0'5;. Y.
neously. Also after every time step, the angle between the normag 1 in the anode surfageFor values ofA > 2 the current distri-
and theY axis changesEq. 20, Fig. 1. This is recalculated after ution is uniform. As the aspect ratid decreases, the current dis-

every time step for every node point as tribution becomes highly nonuniform. .
During electrodeposition, the deposit grows on the cathode. This

Hi(t) — Hi_1(7) means that during deposition, the aspect rétidecreases and the
arfi(r + A1)} = —————— [28]  nonuniformity of current distribution increases. So, the deposit
growth becomes more nonuniform as time progresses. This can be

This was not necessary for the primary current distributions becaus@uantified by following the deposit growth. The deposit growth is

the potential at the surface of the cathodte£ H) was known(Eq.  'ollowed in Fig. 3 as a function of time with = 1 and®, = 1 as
14). a function of timer. Initially at timer = O, there is no deposit. As

11. If one were to solve for a different configuration or initial ime progresses, the deposit grows over the cathode surface. We
sizes of anode or cathode, one has to find Eq. 25 and 26 by using thi@dserve that the thicknessat= 0 is small compared to the thick-
procedure presented here or in Ref. 5 and repeat the same proceduf@ss atX = 1. The uniformity of the deposit obtained can be pre-
There is no need to solve the Laplace equation again. This flexibilitydicted by finding the ratio of maximum thicknegat X = 1) to
is a unique aspect of our technique. minimum thicknesgat X = 0), which can be defined as the shape
All the figures reported in the next section were obtained by ratio
symbolically solving the Laplace equation only once and calcula-
tions were redone only in time. All the results reported in this in-
vestigation are simulated with = 13 interior node points. Euler’s
explicit time stepping Eq. 27 was used in our simulation for the
time derivative for convenience. For the examples chosen in thisgj)| et a113 used a similar variable for measuring the step coverage
paper, Euler’'s explicit time stepping was found to be sufficient andduring pulse plating of copper. The shape raSpas a function of
the re;ults were verified by decreasin_g the step size in time. HOWyimensionless timér) is plotted in Fig. 4. Initially at very low
ever, it should be noted that depending on the geometry and thgayes ofr, the shape rati¢S) is 1.2. As the deposition progresses,
problem chosen, Euler's explicit time stepping may not convergegjnce the aspect ratio decreases, the current distribution becomes
and accurate/higher order schemes in time might be needed.  more nonuniform. Hence, the deposit growth becomes increasingly
nonuniform. Since primary current distributions depend only on the
) ) aspect ratio, the deposit growth nature and shape ratio also depend
The normalized current density at the cathode can be calculategly on the aspect rati. For primary current distribution, we can

thickness atX = 1 H(1)
thickness atX = 0 H(0)

Shape ratio(S) = [30]

Results and Discussion

using the average current density as conclude that for ideal uniform deposit growth, the aspect ratio
i i should be large. However, by increasidg the cell resistance is
|l = — = /—— [29] increased and the time taken for deposition increases. So, tradeoffs
lag  JoldX should be made between deposition cost and uniformity of deposit.
One should note that this conclusion is true only for the geometry
wherei is the normal current density at the cathode surfaag 6. presented in Fig. 1. The change of cathode shape decreases the
The primary current distribution at the cathode at time: 0 (im- aspect ratio with time. This is taken care of in the simulation. Again,

mediately before the deposition begiris plotted in Fig. 2 as a asH increases, the aspect ratio decreases, and this is included in the
function of the aspect ratid with &, = 1. All the simulations for ~ simulation.

primary current distribution were performed withy, = 1 as the For secondary current distributions both the cathode and anode
primary current distribution is independent of the magnitude of thetransfer coefficient§a, and ag) in Eq. 18 are taken to be 0.5.
applied potential® , .* We note that for the geometry chosen, the Current distribution along the cathode at time= 0 is plotted in
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Figure 6. Secondary current distribution at= 0 — effect of applied po-
tential @, (1o = 1,A = 1).

Dimensionless Time, T

Figure 4. Shape ratio for primary current distributidA = 1, d, = 1).

tion. We observe by comparing Fig. 6 and 7 thahas more effect
Fig. 5 for various values of aspect raficatT = O for a set value of  on the distribution than the applied potentii), .
parameters, = 1 and®, = 1. For values ofA > 2, the distribu- The deposit growth is followed in Fig. 8 as a function of time for
tion is uniform. As the aspect ratio decreases, the nonuniformitya set value of parametefs= 1,15 = 1, and®, = 1. We note that
increases. For values @& < 0.5, the distribution becomes highly ~deposit growth is proportional to the current density and the orien-
nonuniform. tation (cos6) according to Eq. 20. We observe that thickness is
Secondary current distributions become more nonuniform as thenaximum atX = 1 where the current density is the maximum and
applied potential®, is increased as shown in Fig. 6 for time minimum at X = 0 where the current density is minimum as
= 0. For this simulation the parameters are taken té\be 1 and expected.
o = 1. Unlike primary current distributions, secondary distribu- The shape of the electrode for various values of exchange current
tions are affected by the applied potentil), . For low values of  |g is plotted in Fig. 9 for the same amount of tint® passed £
applied potentiakb,, the distribution is uniform. As the applied = 0.25). The parameters are taken todbe= 1 and®, = 1. Asl
potential increases, the distribution becomes more nonuniform.  increases, the current distribution becomes more nonuniféim
Secondary current distribution at time= 0 across the cathode 7). So we observe that dsg increases the deposit becomes more
surface is plotted in Fig. 7 for different values of dimensionless nonuniform and we get higher thickness. However this conclusion
exchange currenfpolarization parameter,) for a set value of pa- can be misleading because= 1 corresponds to a uniform current
rametersA = 1 and®, = 1. Note that only the initial aspect ratio distribution (Fig. 5). If we decreasé\ to 0.33 we observe different
is set to beA = 1. As the exchange currehy increases, the distri-  results. The simulated cathode shapes for two different values of
bution becomes more nonuniform and approaches primary distribu€xchange currenit, are plotted in Fig. 10 for the same amount of
time passed« = 0.25). Here|, = 10 corresponds to highly non-
linear distribution and the deposit growth is less ¥or< 0.2 com-
pared tol, = 1. But for values ofX > 0.2, we observe thicker

Dimensionless current density, 1

Dimensionless current density, |

0o 02 0.4 06 08 1
Distance along the cathode, X Distance along the cathode, X
Figure 5. Secondary current distribution at= 0 — effect of aspect ratié Figure 7. Secondary current distribution at= 0 — effect of exchange

(lo =1, &, = 1). currently (A =1, d, = 1).
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Figure 8. Changing cathode shape governed by secondary current

Distance along the cathode, X
distribution-semianalytical methadd\ = 1, ®, = 1,15 = 1). stan &

Figure 10. Dependence of changing cathode shape=(0.25) on the ex-

change current, for smaller aspect ratioA = 0.33,0, = 1).
deposit forX > 0.2 compared td, = 1. So there can be an opti-
mum value forl, to ensure minimum thickness and maximum
uniformity. the geometry chosen, the shape ratio approaches one for high values

The shape rati¢S) is plotted in Fig. 11 as a function of time for of aspect ratios because for high aspect ratios, the current distribu-
different values ofl ; for set values of the parametess,= 1 and  tion is uniform(see Fig. 5.
®, = 1. Shape ratio increases as a function of tim&Ve observe Shape ratio for a different geometianode and cathode are
that shape ratio is less for secondary current distribution compare@witched in size, Fig.)Jlused by Alkireet al,” is plotted in Fig. 13.
to the primary distribution(Fig. 4). As the exchange current in- For this case, we observe that shape ratio initially increases margin-
creases, the shape ratio becomes more nonuniform. For both prilly and then decreases with time. This happens because of infinite
mary and secondary current distributions, we observe that the shapeurrent density akK = 0.5. The singularity aK = 0.5 is handled by
ratio increases with depositioftime). This conclusion is true for  equating the potential derivativesXt= 0.5 as described in Ref. 5.
only the geometry considered. So cos@) in Eq. 20 decreases drastically as we go frémn+ 0 to
The shape ratio(S) at a particular dimensionless timer ( 0.5. This makes the current distribution uniform as the time

= 0.1) is plotted in Fig. 12 as a function &f for different values  progresses as reported in the literatlire.
of aspect ratiosA, for a fixed value of parameteb, = 1. Shape
ratio increases exponentially as a function of tirgeand then satu-
rates. As the aspect ratio decreases, the current distribution becomes The semianalytical method presented eatlisrextended to pre-
nonuniform and hence, shape ratio becomes more nonuniform. Foflict shape changes during electrodeposition. The new technique pro-

Conclusions
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Figure 9. Dependence of changing cathode shape=(0.25) on the ex- Figure 11. Shape ratio for secondary current distributieneffect of ex-

change currenty (A = 1, ®, = 1). change currenty (A = 1, 5 = 1).



C504 Journal of The Electrochemical Socigty49 (10) C498-C5052002

- 1 T 1 changes in two and three dimensions. The extension of the semiana-
26 I lytical technique to three dimensions is straightforward, but the math
' involved in obtaining a semianalytical solution for 3-D problems is

| complicated. For example, for Laplace equation in three dimensions,
24 A=05 one can apply finite differences i and z directions and obtain
I semianalytical solutions ity easily*® However, this will help us
1 predict shape changes in tlgedirection only. If one has to predict
22T the shape changes in bottandy directions, one has to apply finite
ey i differences inz only and integrate analytically in bothandy. This
I | _ integration is not straightforward and we are currently working on
e 2.0 integrating matrix equations in two dimensiopxsandy). This work
b= I will be communicated later. In addition, finite difference expressions
‘m/ 18| of higher order of accuracy can be used to increase the efficiency of
. : ] the computatiori. Maple programs used for simulating the shape
-% [ A=0.75 changes are available upon request from the authors.
s "
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1.0 —— L List of Symbols
0 1 2 3 4 5

aspect ratio at = 0, b/l

height of the cell, cm

dimensionless unknown constants
Faraday’s constant, 96487 C/g equiv
thickness of the deposit, cm

. . S dimensionless thickness of the deposit
Figure 12. Shape ratio for secondary current distributieneffect of ex- dimensionless thickness of the deposit at the node point i

. i
change current, and aspect ratioA (d, = 1). i current density, A cm?
iayg average current density along the cathode, Atm
dimensionless current density

I
i ) . ) i . lp dimensionless exchange current density
vides a general symbolic solution for the Laplace equation, which is | length of the cell, cm

valid for any boundary conditions on the cathode and anode. The M molecular weight, g/mol ) _ _
generality of the solution obtained is exploited to predict the shape " Ir;]“*;‘;?gruzflter:‘fjf:]!‘;rl‘?Otrt?]?fsirrr;‘iénotfh; :'Ceg;(&‘;leemgg' ;eac“on
changes for_ both primary and se_condary current distributions. The  (oial number of interior node points '
shape ratio is found to increase with the deposition for the geometry r gas constant, 8.3143 J/g mol-deg
chosen for both primary and secondary current distributions. This is S shape ratio
true because aspect ratio has more impact on the distribution than t tme,s ) )
the kinetics and the applied potential. A;(( ‘i};’l‘\‘e'f";;"ess spatial coordinate]

Mass transfer models for metal deposition also obey Laplace’s v gimensionless spatial coordinasg
equation in two dimension with a changing cathode sH&p&!®
The technique developed in this paper should find direct use in thesereek
mass transfer models. Future work involves predicting shape N

A

Dimensionless exchange current density, I,

I->To o>

T

anodic transfer coefficient
ac cathodic transfer coefficient
V gradient, cm®

k conductivity, 0"t cm™*
1.58 ¢ potential, V
& applied anode potential, V
1571 d¢c applied cathode potential, V

& dimensionless potential

] ®, dimensionless applied potential

1 56 0 angle_ between the u_nit normal to the cathode surface and Y-axis
’ p density of the deposit, g/cn

At dimensionless increment in time
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