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Simulating Shape Changes during Electrodeposition
Primary and Secondary Current Distribution

Venkat R. Subramanian* ,z and Ralph E. White**

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

A technique based on the analytical method of lines is presented for predicting shape changes during electrodeposition. The
technique is presented for both primary and secondary current distributions. The method presented does not require iterations for
nonlinear Butler-Volmer boundary conditions or changing electrode shapes. The technique is based on a semianalytical method
developed earlier for predicting current distributions in electrochemical cells. This technique is attractive because it provides a
symbolic solution for the Laplace equation, and hence requires less computation time to perform case studies.
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Potential distributions and their associated current density di
butions ~primary and secondary! are typically obtained by solving
Laplace’s equation.1-3 The methods used to solve Laplace’s equat
include analytical and numerical methods. Analytical methods~e.g.,
conformal mapping4! provide the maximum insight into the problem
and usually yield closed form potential and current distributio
Unfortunately, analytical techniques are system specific, are
stricted to linear kinetics, and are often difficult to obtain. Numeri
techniques are very general, but usually give a numerical value
the potential at a particular location. A new technique~semianalyti-
cal method or analytic method of lines! was developed5 and shown
to be more general than a particular analytical solution techniqu
gave better insight than numerical techniques for a certain clas
problems~Laplace equation which has constant coefficients in
least one of the independent variables!. Note that the semianalytica
method presented earlier5 for solving Laplace’s equation in two spa
tial coordinates with nonlinear boundary conditions does not req
iterations for interior node points as is the case for numer
methods.6 Nonlinearities of the boundary conditions can be remov
by solving for the constants that appear in the solution of Laplac
equation using our analytic method of lines.5

During electrodeposition of a metal~e.g., copper! on a substrate,
the deposit grows on the cathode. Since the shape of the cat
changes during deposition, the potential and current distributions
usually solved numerically.7-11 Numerical methods reported in th
literature7-11 for solving the Laplace equation include finite diffe
ence, finite element, and boundary element techniques. Georgi
et al.11 developed an adaptive finite element method for simulat
shape changes. Numerical methods reported in the literature re
solving the Laplace equation for every time step because the s
of the cathode changes, and the numerical methods require so
the Laplace equation again for a new geometry. In addition,
every time step the existing numerical methods in the literature
quires iterations until convergence for solving the Laplace equa
with nonlinear Butler-Volmer boundary conditions. Our semianaly
cal method provides a means for solving for the Laplace equa
with nonlinear Butler-Volmer boundary conditions without iter
tions. Another advantage of the semianalytical method is that
method is valid for arbitrary cathode shapes as shown for a s
soidal electrode.5 The flexibility of the semianalytical method in
handling nonlinear boundary conditions and arbitrary electro
shapes is exploited in this investigation to predict the shape cha
during electrodeposition. Another unique aspect of the semiana
cal technique is that the method yields both potential and cur
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distributions simultaneously. This avoids numerical inaccuracies
result from numerical differentiation of the potential distribution
find the current distribution.

Recently, Westet al.12 and Gill et al.13 presented models for pre
dicting copper electrodeposition in vias and trenches.12,13 In their
models, they assumed that the deposit grows in one dimension
this paper, we present a technique for modeling the deposit gro
in one dimension~1-D! where the potential is governed by th
Laplace equation in 2-D.

Theoretical Formulation

The 2-D cell to be modeled is shown in Fig. 1. The cathode is
primary interest and is at the bottom of the cell and the anod
coplanar with the upper insulating plane. The sidewalls repres
either insulating surfaces or planes of symmetry. Between the e
trodes is an electrolytic solution of uniform composition. Ele
trodeposition of metal at the cathode occurs at constant cell volt
This geometry is chosen as it restricts the growth to 1-D. The te
nique developed is general and can handle geometries with si
larities ~e.g., at the anode/insulator interface (x 5 l /2; y 5 b)
where the current density is infinite!.

The following assumptions are made:~i! A single cathodic reac-
tion takes place at the cathode.~ii ! The anode is unpolarized an
does not change shape during electrolysis.~iii ! The transport and
kinetic parameters do not vary in space or time. (iv) The shape
change is restricted to 1-D~y!.

Primary current distribution.—The governing equation for the
potential field in the electrolytic solution obeys the Lapla
equation1

¹2f 5 0 @1#

with the boundary conditions~at the insulators and planes of sym
metry!

]f

]x
5 0 at x 5 0 and x 5 l for all y @2#

]f

]y
5 0 at y 5 b, 0 < x ,

l

2
@3#

Since the anode is unpolarized, the potential in the electrolytic
lution is equal to the set potential of the anodefA , and is uniform
along its surface

f 5 fA at y 5 b,
l

2
< x , l ~reversible anode! @4#

At the cathode surface for a primary current distribution, the cath
remains unpolarized

f 5 fC 5 0 at y 5 h for all x ~reversible cathode! @5#

Note that the heighth of the deposit defined in Eq. 5 varies both a
a function of timet and the positionx. Initially at time t 5 0, the
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deposit thicknessh is zero. Equations 1-5 provide the current a
potential distribution within the cell for any particular surface sha
At any instant in time, the local growth of the cathode surface
given by Faraday’s law

dh

dt
5 2

M

nrF
i 5

Mk

nrF

]f

]yy5h
@6#

This is a moving boundary problem with moving boundary~cathode
shape! defined by Eq. 6. The governing equations are made dim
sionless using the following variables

F 5
nF

RT
~f 2 fC!; X 5

x

l
; Y 5

y

l
; A 5

b

l
@7#

H 5
h

l
@8#

and

t 5
MkRT

l 2n2F2r
t @9#

The model equations become

A2
]2F

]X2 1
]2F

]Y2 5 0 @10#

]F

]X
5 0 at X 5 0 and X 5 1 for all Y @11#

]F

]Y
5 0 at Y 5 1, 0 < X ,

1

2
@12#

Figure 1. Cell geometry prior to shape change at cathode.
.

-

F 5 FA at Y 5 1,
1

2
< X , 1 ~reversible anode! @13#

F 5 0 at Y 5 H for all X ~reversible cathode! @14#

dH

dt
5

]F

]Yat cathode, Y5H
@15#

with the initial condition

H~t 5 0! 5 0 @16#

Note that no initial conditions are required forF(X,Y). The above
dimensionless groups were presented earlier by Alkireet al.7 Equa-
tions 10-16 constitute the system to be solved in order to determ
the shape evolution of the cathode with time@i.e., H(t)#.

Secondary current distribution.—For secondary current distribu
tions, the reaction rate obeys both Ohm’s law and Butler-Volm
kinetics at the cathode surface

i 5 2k
]f

]n̄y5h
5 i 0@eaAnF/RTf 2 e2aCnF/RTf#y5h @17#

wheren̄ is the inward normal directed from the cathode surface~Fig.
1!. Initially, the normal vectorn̄ is in the same direction as they
axis, but the direction ofn̄ changes with time as the deposit grow
on the cathode surface. This change of direction ofn̄ is included in
our model as explained below. Equation 17 can be converte
dimensionless form

]F

]n̄Y5H
5 2I 0@eaAF 2 e2aCF#Y5H @18#

whereI 0 is the dimensionless exchange current density defined

I 0 5
i 0 l nF

kRT
@19#

In this case, the deposit growth rate in theY direction is defined by

dH

dt
5

]F

]Ycathode
5

]F

]n̄cathode
cosu @20#

whereu is the angle between theY axis and the normal vectorn̄.
Note thatu 5 0 at t 5 0. u changes with botht and X. In this
investigation, we restrict the growth of deposit to theY dimension
only.

Equations 10-13, 16, 18, and 20 constitute the system of eq
tions to be solved to determine the evolution of the cathode sh
with time @H(t)# for a secondary current distribution, given valu
for A, I 0 , FA , aA , and aC . Existing methods in the literature
require specifying an initial guess for the distribution of the poten
for solving Butler-Volmer boundary conditions. Our method do
not require any initial guesses for the potential distribution.5

Semianalytical Technique

The computational method consists of applying finite differen
approximations for the derivatives which are accurate to the o
(DX)2 in the X axis and integrating the resulting equations analy
cally in Y. This method converts the Laplace equation and
boundary conditions atX 5 0 andX 5 1 to a system of coupled
second order linear ordinary differential equations inY for the val-
ues of the potentials at the interior node pointsi (F i) .

5 The potential
along the lineX 5 0.5 has a singularity atY 5 1. Consequently, to
remove the need to specify a boundary condition forF at X 5 0.5
andY 5 1, the potential along the line (X 5 0.5) is eliminated by
equating the backward and forward flux of potentials atX 5 0.5 for
all Y except Y 5 1.5 For example, whenN 5 13 interior node
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points are used, the seventh interior node point (N 1 1)/2 corre-
sponds to the lineX 5 0.5. The potential at this line is eliminate
by requiring that the current in theX direction be continuous

]F

]XX50.52
5

]F

]XX50.51
@21#

Equation 21 can be written in finite difference form

1

2

3F~N11!/2 2 4F~N21!/2 1 F~N23!/2

Dx

5
1

2

23F~N11!/2 1 4F~N13!/2 2 F~N15!/2

Dx
@22#

whereDX 5 1/(N 1 1) and Eq. 22 can be solved forF (N11)/2

F~N11!/2 5
2

3
~F~N13!/2 1 F~N21!/2!

2
1

6
~F~N15!/2 1 F~N23!/2! @23#

Note that to includeX 5 0.5 as a node point,N should be chosen a
an odd number.

The Laplace equation is discretized in theX axis using finite
differences withN interior node points. The potentials at the 0th a
N 1 1th node points are given by the boundary conditions aX
5 0 and 1, respectively~Eq. 11!. The potential atX 5 0.5 @(N
1 1)/2th node point# is given by Eq. 23 and is used to remov
explicit dependence of the potential at node (N 1 1)/2 from the
system of equations. So whenN interior node points are used, th
Laplace equation is converted toN 2 1 linear coupled second orde
differential equations inY.5 These equations are then integrated
ing the matrix exponential matrix method.5 For a primary current
distribution case, whenN interior node points are used, the depo
growth rate is given byN 2 1 simultaneous first order ordinar
differential equations

dHi

dt
5

]F i

]YY5Hi

5 ci , i 5 1 ... N, i Þ ~N 1 1!/2 @24#

whereci is the potential derivative (]F/]Y) at the cathode surfac
at the various interior node points~i.e., ci 5 ]F i /]Yxi

where Xi

5 iDX for i 5 1 ... N, i Þ (N 1 1)/2!. The boundary conditions
at Y 5 1 are given by

f i~H i~t!, ci,i51...N, iÞ~N11!/2! 5 0 i 5 1 ... N, i Þ ~N 1 1!/2

@25#

The functionsf i values are obtained in the same manner as th
given by Eq. 31 and 32 in Ref. 5, however, thef i values obtained
here are too long to be included.~Thesef i values are available upo
request from the authors.! Thus, the problem is reduced to 2N
2 2 unknowns~H i andci at i 5 1 ... N, i Þ (N 1 1)/2! whose
values are obtained by solving theN 2 1 simultaneous first orde
ordinary differential equations~ODEs! given by Eq. 24 andN
2 1 algebraic equations given by Eq. 25. Equations 24 and
constitute the governing equations for predicting the cathode sh
changes for primary current distributions.

Equations 24 and 25 developed above for primary current di
butions are also valid for secondary current distributions~Eq. 20 and
18!. However, in secondary current distributions, theci values are
given by the Butler-Volmer equation5

ci 5 2I 0@eaAF i 2 e2aCF i#y5H cosu, i 5 1 ... N,

i Þ ~N 1 1!/2 @26#
e

5
e

i-

So for secondary current distribution, the given moving bound
problem is reduced toN 2 1 simultaneous first order ODEs give
by Eq. 24 with 2N 2 2 algebraic equations given by Eq. 25 and 2
Equations 24-26 constitute the governing equations for predic
the shape changes for secondary current distribution. The step
volved in the simulation can be summarized as follows.

1. Laplace equation~Eq. 10! is discretized in theX direction by
applying finite differences withN equally spaced interior node
points.

2. The boundary values for the potential atX 5 0 andX 5 1 are
eliminated using the boundary conditions~Eq. 11!.

3. The potential along the lineX 5 0.5 @ i 5 (N 1 1)/2# is
eliminated using Eq. 23.

4. The potential derivatives atY 5 H ~at the interior node
points! are specified asci , where i goes from 1 toN ( i Þ (N
1 1)/2).

5. The problem is reduced to 2N 2 2 unknowns~H i and ci at
i 5 1 ... N, i Þ (N 1 1)/2! whose values are obtained by solvin
the N 2 1 simultaneous nonlinear ODEs in time~Eq. 24! coupled
with N 2 1 algebraic equations~Eq. 25! for primary current distri-
butions. For secondary current distributions, the problem is redu
to 3N 2 3 unknowns~H i , ci , and F i at i 5 1 ... N, i Þ (N
1 1)/2! whose values are obtained by solving theN 2 1 simulta-
neous nonlinear ODEs in time~Eq. 24! coupled with 2N 2 2 alge-
braic equations~Eq. 25 and 26!. For both primary and secondar
current distributions, a symbolic solution is obtained for the pot
tial and current distributions for a given geometry.5 These symbolic
solutions are general and valid for any cathode shape, polariza
parameterI 0 , aspect ratioA, and size of cathode and anode.5,14

These symbolic solutions are also valid for any boundary condi
on the cathode and anode~for example, see Eq. 44, 47, and 50 in
Ref. 5!.

6. The functionsf i defined in Eq. 25 depend on the bounda
condition atY 5 1. For values ofX , 0.5 @ i , (N 1 1)/2# f i is
given by the insulator boundary condition. For values ofX . 0.5
@ i . (N 1 1)/2#, f i is given by the boundary condition at the a
ode surface (F i 5 FA).

7. Potential and current distributions are obtained for the giv
geometry at timet 5 0. These symbolic solutions are valid for bo
the primary and secondary current distributions. For primary curr
distributions, the values ofA, FA , and N are fixed. This gives a
symbolic expression for the functionsf i defined in Eq. 25. The
functionality f i defined in Eq. 25 is a function of deposit thickness
the i th node point,H i(t) and the potential gradients,ci . The N
2 1 algebraic equations~Eq. 25! are solved simultaneously to giv
the current distribution atY 5 H ~cathode surface! at t 5 0; i.e.,
unknown constantsci @ i 5 1 ... N, (i Þ (N 1 1)/2#. Note that at
time t 5 0, the thicknesses at all the interior node points@H i(t)#
are all zero. A time step ofDt is chosen and Eq. 24 is integrated b
using Maple with Euler’s explicit forward integration

H i~t 1 Dt! 5 H i~t! 1 ciDt, i 5 1 ... N, i Þ ~N 1 1!/2

@27#

8. Once the new thicknesses@H i(t 1 Dt)# at the interior node
points are estimated using Eq. 27, the new values of thickn
H i(t 1 Dt) are substituted in the functionsf i in Eq. 25. TheseN
2 1 algebraic equations are again solved for theci values to give
the current distribution atY 5 H i at t 5 t 1 2Dt. These new
values ofci , @i 5 1 ... N, (i Þ (N 1 1)/2# are then substituted
into Eq. 27 to find the new thicknessH i(t 1 2Dt).

9. Step 9 is repeated and the shape evolution of cathode su
is obtained.

10. The same procedure used for primary current distribution
followed for the secondary current distributions also. In addition
solving theN 2 1 algebraic equations for the functionalityf i de-
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fined by Eq. 25 at every time step,N 2 1 algebraic equations fo
the Butler-Volmer equation defined by Eq. 26 are solved simu
neously. Also after every time step, the angle between the no
and theY axis changes~Eq. 20, Fig. 1!. This is recalculated afte
every time step for every node point as

tan@u i~t 1 Dt!# 5
H i~t! 2 H i21~t!

h
@28#

This was not necessary for the primary current distributions beca
the potential at the surface of the cathode (Y 5 H) was known~Eq.
14!.

11. If one were to solve for a different configuration or initi
sizes of anode or cathode, one has to find Eq. 25 and 26 by usin
procedure presented here or in Ref. 5 and repeat the same proce
There is no need to solve the Laplace equation again. This flexib
is a unique aspect of our technique.

All the figures reported in the next section were obtained
symbolically solving the Laplace equation only once and calcu
tions were redone only in time. All the results reported in this
vestigation are simulated withN 5 13 interior node points. Euler’s
explicit time stepping~Eq. 27! was used in our simulation for th
time derivative for convenience. For the examples chosen in
paper, Euler’s explicit time stepping was found to be sufficient a
the results were verified by decreasing the step size in time. H
ever, it should be noted that depending on the geometry and
problem chosen, Euler’s explicit time stepping may not conve
and accurate/higher order schemes in time might be needed.

Results and Discussion

The normalized current density at the cathode can be calcul
using the average current density as

I 5
i

i avg
5

i

*0
1idX

@29#

wherei is the normal current density at the cathode surface~Eq. 6!.
The primary current distribution at the cathode at timet 5 0 ~im-
mediately before the deposition begins! is plotted in Fig. 2 as a
function of the aspect ratioA with FA 5 1. All the simulations for
primary current distribution were performed withFA 5 1 as the
primary current distribution is independent of the magnitude of
applied potential,FA .1 We note that for the geometry chosen, t

Figure 2. Primary current distribution att 5 0 2 effect of aspect ratioA
5 b/ l .
-
al
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current density on the cathode surface remains finite, since the
no singular point in the cathode surface.~On the contrary, the cur-
rent density becomes infinity at the singular pointX 5 0.5; Y
5 1 in the anode surface!. For values ofA . 2 the current distri-
bution is uniform. As the aspect ratioA decreases, the current dis
tribution becomes highly nonuniform.

During electrodeposition, the deposit grows on the cathode. T
means that during deposition, the aspect ratioA decreases and th
nonuniformity of current distribution increases. So, the depo
growth becomes more nonuniform as time progresses. This ca
quantified by following the deposit growth. The deposit growth
followed in Fig. 3 as a function of time withA 5 1 andFA 5 1 as
a function of timet. Initially at time t 5 0, there is no deposit. As
time progresses, the deposit grows over the cathode surface
observe that the thickness atX 5 0 is small compared to the thick
ness atX 5 1. The uniformity of the deposit obtained can be pr
dicted by finding the ratio of maximum thickness~at X 5 1! to
minimum thickness~at X 5 0!, which can be defined as the shap
ratio

Shape ratio~S! 5
thickness atX 5 1

thickness atX 5 0
5

H~1!

H~0!
@30#

Gill et al.13 used a similar variable for measuring the step cover
during pulse plating of copper. The shape ratio~S! as a function of
dimensionless time~t! is plotted in Fig. 4. Initially at very low
values oft, the shape ratio~S! is 1.2. As the deposition progresse
since the aspect ratio decreases, the current distribution beco
more nonuniform. Hence, the deposit growth becomes increasi
nonuniform. Since primary current distributions depend only on
aspect ratio, the deposit growth nature and shape ratio also de
only on the aspect ratioA. For primary current distribution, we ca
conclude that for ideal uniform deposit growth, the aspect ratioA
should be large. However, by increasingA, the cell resistance is
increased and the time taken for deposition increases. So, trad
should be made between deposition cost and uniformity of dep
One should note that this conclusion is true only for the geome
presented in Fig. 1. The change of cathode shape decrease
aspect ratio with time. This is taken care of in the simulation. Aga
asH increases, the aspect ratio decreases, and this is included i
simulation.

For secondary current distributions both the cathode and an
transfer coefficients~aA and aB! in Eq. 18 are taken to be 0.5
Current distribution along the cathode at timet 5 0 is plotted in

Figure 3. Changing cathode shape governed by primary current distribu
~A 5 1, FA 5 1!.
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Fig. 5 for various values of aspect ratioA at t 5 0 for a set value of
parametersI 0 5 1 andFA 5 1. For values ofA . 2, the distribu-
tion is uniform. As the aspect ratio decreases, the nonuniform
increases. For values ofA , 0.5, the distribution becomes highl
nonuniform.

Secondary current distributions become more nonuniform as
applied potentialFA is increased as shown in Fig. 6 for timet
5 0. For this simulation the parameters are taken to beA 5 1 and
I 0 5 1. Unlike primary current distributions, secondary distrib
tions are affected by the applied potentialFA . For low values of
applied potentialFA , the distribution is uniform. As the applie
potential increases, the distribution becomes more nonuniform.

Secondary current distribution at timet 5 0 across the cathod
surface is plotted in Fig. 7 for different values of dimensionle
exchange current~polarization parameterI 0! for a set value of pa-
rametersA 5 1 andFA 5 1. Note that only the initial aspect rati
is set to beA 5 1. As the exchange currentI 0 increases, the distri-
bution becomes more nonuniform and approaches primary distr

Figure 4. Shape ratio for primary current distribution~A 5 1, FA 5 1!.

Figure 5. Secondary current distribution att 5 0 2 effect of aspect ratioA
(I 0 5 1, FA 5 1!.
y

e

-

tion. We observe by comparing Fig. 6 and 7 thatI 0 has more effect
on the distribution than the applied potentialFA .

The deposit growth is followed in Fig. 8 as a function of time f
a set value of parametersA 5 1, I 0 5 1, andFA 5 1. We note that
deposit growth is proportional to the current density and the ori
tation (cosu) according to Eq. 20. We observe that thickness
maximum atX 5 1 where the current density is the maximum a
minimum at X 5 0 where the current density is minimum a
expected.

The shape of the electrode for various values of exchange cu
I 0 is plotted in Fig. 9 for the same amount of time~t! passed (t
5 0.25). The parameters are taken to beA 5 1 andFA 5 1. As I 0
increases, the current distribution becomes more nonuniform~Fig.
7!. So we observe that asI 0 increases the deposit becomes mo
nonuniform and we get higher thickness. However this conclus
can be misleading becauseA 5 1 corresponds to a uniform curren
distribution ~Fig. 5!. If we decreaseA to 0.33 we observe differen
results. The simulated cathode shapes for two different value
exchange currentI 0 are plotted in Fig. 10 for the same amount
time passed (t 5 0.25). Here,I 0 5 10 corresponds to highly non
linear distribution and the deposit growth is less forX , 0.2 com-
pared toI 0 5 1. But for values ofX . 0.2, we observe thicker

Figure 6. Secondary current distribution att 5 0 2 effect of applied po-
tential FA ~I 0 5 1, A 5 1!.

Figure 7. Secondary current distribution att 5 0 2 effect of exchange
currentI 0 ~A 5 1, FA 5 1!.
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deposit forX . 0.2 compared toI 0 5 1. So there can be an opt
mum value for I 0 to ensure minimum thickness and maximu
uniformity.

The shape ratio~S! is plotted in Fig. 11 as a function of time fo
different values ofI 0 for set values of the parameters,A 5 1 and
FA 5 1. Shape ratio increases as a function of timet. We observe
that shape ratio is less for secondary current distribution comp
to the primary distribution~Fig. 4!. As the exchange current in
creases, the shape ratio becomes more nonuniform. For both
mary and secondary current distributions, we observe that the s
ratio increases with deposition~time!. This conclusion is true for
only the geometry considered.

The shape ratio~S! at a particular dimensionless time (t
5 0.1) is plotted in Fig. 12 as a function ofI 0 for different values
of aspect ratios,A, for a fixed value of parameterFA 5 1. Shape
ratio increases exponentially as a function of timeI 0 and then satu-
rates. As the aspect ratio decreases, the current distribution bec
nonuniform and hence, shape ratio becomes more nonuniform

Figure 8. Changing cathode shape governed by secondary cur
distribution-semianalytical method~A 5 1, FA 5 1, I 0 5 1!.

Figure 9. Dependence of changing cathode shape (t 5 0.25) on the ex-
change currentI 0 ~A 5 1, FA 5 1!.
d

ri-
pe

es
or

the geometry chosen, the shape ratio approaches one for high v
of aspect ratios because for high aspect ratios, the current dist
tion is uniform ~see Fig. 5!.

Shape ratio for a different geometry~anode and cathode ar
switched in size, Fig. 1! used by Alkireet al.,7 is plotted in Fig. 13.
For this case, we observe that shape ratio initially increases ma
ally and then decreases with time. This happens because of infi
current density atX 5 0.5. The singularity atX 5 0.5 is handled by
equating the potential derivatives atX 5 0.5 as described in Ref. 5
So cos(u) in Eq. 20 decreases drastically as we go fromX 5 0 to
0.5. This makes the current distribution uniform as the tim
progresses as reported in the literature.7

Conclusions

The semianalytical method presented earlier5 is extended to pre-
dict shape changes during electrodeposition. The new technique

t

Figure 10. Dependence of changing cathode shape (t 5 0.25) on the ex-
change currentI 0 for smaller aspect ratios~A 5 0.33,FA 5 1!.

Figure 11. Shape ratio for secondary current distribution2 effect of ex-
change currentI 0 ~A 5 1, FA 5 1!.
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vides a general symbolic solution for the Laplace equation, whic
valid for any boundary conditions on the cathode and anode.
generality of the solution obtained is exploited to predict the sh
changes for both primary and secondary current distributions.
shape ratio is found to increase with the deposition for the geom
chosen for both primary and secondary current distributions. Th
true because aspect ratio has more impact on the distribution
the kinetics and the applied potential.

Mass transfer models for metal deposition also obey Lapla
equation in two dimension with a changing cathode shape.11-13,15

The technique developed in this paper should find direct use in t
mass transfer models. Future work involves predicting sh

Figure 12. Shape ratio for secondary current distribution2 effect of ex-
change currentI 0 and aspect ratio,A (FA 5 1).

Figure 13. Shape ratio for a different geometry~A 5 1, FA 5 1!.
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changes in two and three dimensions. The extension of the sem
lytical technique to three dimensions is straightforward, but the m
involved in obtaining a semianalytical solution for 3-D problems
complicated. For example, for Laplace equation in three dimensi
one can apply finite differences inx and z directions and obtain
semianalytical solutions iny easily.16 However, this will help us
predict shape changes in they direction only. If one has to predic
the shape changes in bothx andy directions, one has to apply finite
differences inz only and integrate analytically in bothx andy. This
integration is not straightforward and we are currently working
integrating matrix equations in two dimensions~x andy!. This work
will be communicated later. In addition, finite difference expressio
of higher order of accuracy can be used to increase the efficienc
the computation.5 Maple programs used for simulating the sha
changes are available upon request from the authors.
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List of Symbols

A aspect ratio att 5 0, b/ l
b height of the cell, cm
ci dimensionless unknown constants
F Faraday’s constant, 96487 C/g equiv
h thickness of the deposit, cm
H dimensionless thickness of the deposit

H i dimensionless thickness of the deposit at the node point i
i current density, A cm22

iavg average current density along the cathode, A cm22

I dimensionless current density
I 0 dimensionless exchange current density
l length of the cell, cm

M molecular weight, g/mol
n number of electrons transferred in the electrochemical reaction
n̄ inward unit normal to the surface of the cathode~see Fig. 1!
N total number of interior node points
R gas constant, 8.3143 J/g mol-deg
S shape ratio
t time, s
X dimensionless spatial coordinate,x/ l

DX 1/(N 1 1)
Y dimensionless spatial coordinate,y/ l

Greek

aA anodic transfer coefficient
aC cathodic transfer coefficient
¹ gradient, cm21

k conductivity,V21 cm21

f potential, V
fA applied anode potential, V
fC applied cathode potential, V
F dimensionless potential

FA dimensionless applied potential
u angle between the unit normal to the cathode surface and Y-axis
r density of the deposit, g/cm3

Dt dimensionless increment in time
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